
Cellogram: On the Fly Traction Force Microscopy
supplementary Material

Tobias Lendenmann1,2,*, Teseo Schneider2,*, Jérémie Dumas2,3, Marco
Tarini4, Costanza Giampietro7, Apratim Bajpai5, Weiqiang Chen5, Julia
Gerber1, Dimos Poulikakos1, Aldo Ferrari1,6,7,**, and Daniele Panozzo2,**

1ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, 8092 Zurich,
Switzerland
2New York University, Courant Institute of Mathematical Sciences, New York 10003, USA
3nTopology, New York 10013, USA
4Università degli Studi di Milano, Department of Computer Science, 20133 Milano, Italy
5New York University, Department of Mechanical and Aerospace Engineering, New York
11201, USA
6ETH Zurich, Institute for Mechanical Systems, 8092 Zürich, Switzerland
7EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600
Dübendorf, Switzerland
*Equal Contribution
**Corresponding authors, panozzo@nyu.edu and aferrari@ethz.ch

Abstract

This document provides a detailed description of the algorithms used in the image
processing pipeline, which is composed of 4 steps: (1) markers detection, (2) inference
of reference graph topology, (3) computation of displacements, and (4) traction force
reconstruction. The 4 steps are illustrated in Supplementary Figure 1 and can be
seen in supplementary videos 1 and 2.

1

mailto:panozzo@nyu.edu
mailto:aferrari@ethz.ch

Figure 1: The 4 pipeline stages, which automatically convert images of reference-free
TFM markers to traction forces.

1 Markers Detection
The algorithm input is a grayscale image acquired by fluorescence microscopy (Figure 2 (a)).
It contains either quantum dots [1] or micropillars [2] as markers. The first step of the
algorithm analyzes the image to extract the 2D position of each marker. First, a Gaussian
filter with a user-defined sigma is applied to the image to reduce noise, i.e., the image
is convoluted with a 2D-Gaussian (Figure 2 (b)). This image is then binarized at the
intensity level determined algorithmically [3] to generate a mask with candidate regions
where the markers could potentially be located (Figure 2 (c)). In parallel a Laplacian of
Gaussian (LoG) filter is applied to the original image. Here, the image is convoluted with
a LoG kernel. The result is an image with low values in locations where originally there
was no gradient of intensity, i.e., the center of markers, and high values where intensity
gradients were strong (Figure 2 (d)). The LoG image then is subtracted from the Gaussian
image to generate a new frame with sharper peaks at the position of the markers. In this
resulting image the local maxima are determined. A pixel is considered a local maxima if
it displays the highest intensity value among its eight neighboring pixels (Figure 2 (e)).
If a pixel is a local maxima and is in the candidate region of the mask, then the pixel’s
position is used to least square fit a 2D Gaussian in its vicinity (Figure 2 (f), [4]) in the
original unfiltered image. The fitted Gaussian has a single user-controlled parameter:
sigma. Duplicate detections that can arise from two maxima located close together, for
which the Gaussians merge, are eliminated after the fitting.

Figure 2: Detection (a) Original image, (b) Gaussian filter (c) Mask generated from
thresholded image in (b) using Otsu-Threshold, (d) Laplacian of Gaussian (LoG), (e)
Detected local maxima in resulting image from LoG subtracted from Gaussian image. The
maxima detected in the mask and outside of the mask are in green and red, respectively.
(f) Least square fit of Gaussians at the detected local maxima.

2

2 Inferring Graph Topology
The previous step generates a set of 2D position of the markers: the regular lattice
connectivity between them shall now be reconstructed. The challenge lies in the fact that
the grid is deformed by the traction forces, which are unknown. The only prior is that,
before the displacement induced by the cells, the markers were positioned over an unknown
subset of a regular triangular lattice of unknown size and orientation. Crucially, for every
marker we only use its position and do not require any additional information.

Differently from previous methods, our reconstruction shall be tolerant to occasional
errors in the detection of markers, correcting false negatives (markers missed by the
detection procedure) as well as false positives (markers “hallucinated” by the detection
procedure). For example, false negatives and positives may be induced by noise, or arise
by the misinterpreting two adjacent markers as a single one.

2.1 Formal Problem Definition

The input of this step is a set of detected 2D points D, each point represented by a pair of
coordinates. The output is a set P ⊂ D of false positives, a set N of false negatives (new
2D points which are inferred to exist although they were never directly observed), and
a permutation α of 2D points (D/N ∪ P) into the position of a regular triangular grid.
Once the permutation is known, the relaxed positions can be inferred by smoothing the
grid (Section 3) and the displacements are then defined by the difference.

Among all potential choices of N, P, α (for a given observation D), the one minimizing
its unlikelihood is defined as

k1|N |+ k2|P |+ E (α (D/P ∪N)) , (1)

where | X | denotes the cardinality of the set X, k1 and k2 are fixed scalar parameters
weighting the penalty associated to different factors (determining how much false positives
and negatives impact the likelihood of a solution), and E(X) is an approximation of the
potential elastic energy which would be required to deform a regular pattern into the given
pattern X (on the ground that the least energetic configuration is the most plausible).

To define E, the elastic substrate is approximated as a network of Hookean linear
springs connecting each pair of direct neighbors on the lattice, resulting in:

E (X) =

|X|∑
i=0

∑
xj∈Ni

(|xi − xj|2 − L)2 , (2)

where L is the step length of the regular lattice, and Ni is the set of neighbors of xi.

2.2 Problem Analysis

This formulation makes the complexity of the problem apparent: it is a combinatorial
optimization over a large space, with a strict set of constraints that must be enforced to
obtain valid solutions. As observed in [1], an exhaustive search of the optimal solution via
a branch and bound algorithm would be practical only for tiny problem instances (up to
around 20 vertices).

We propose an algorithm to efficiently find a low energy solution. While the approach
is not guaranteed to find the optimal solution, in the large majority of cases, it indeed

3

finds the same solution obtained by an exhaustive search, while being orders of magnitudes
faster and scaling to tens of thousands of markers.

The proposed approach is incremental: an initial guess for permutation is initially
proposed, and then iteratively improved until convergence.

The key novelty of the algorithm is the use of two complementary representation for
an intermediate solution for α : a Mesh-based and a Lattice-based representation. The
two representations are equally capable of expressing any consistent permutations α into a
lattice, but crucially, each can also represent certain inconsistencies of different nature.
Switching from one to the other allows reducing these inconsistencies very efficiently.

Overview. The initial guess of α is expressed as a Mesh-based representation. This
solution is then converted back and forth between Lattice and Mesh representation,
applying an optimization step after every conversion. The optimization step improves the
solution, greedy applying a sequence of local operations (i.e., operations affecting only a
small, constant portion of the representation).

In both representations, a local operation lowers the number of inconsistencies and the
energy term for E in Equation (2).

At the end of the process, residual inconsistencies in the final α are interpreted as false
positive and negatives, creating sets P and N respectively.

In summary, the algorithm can be written as:

• Variables: Mesh, Lattice

1. Mesh ← initial_guess (D); Section 2.3

2. loop:

(a) local_operations(Mesh) Section 2.4

(b) convert: Mesh → Lattice Section 2.5

(c) local_operations(Lattice) Section 2.6

(d) if converged then exit loop; Section 2.8

(e) convert: Lattice → Mesh Section 2.7

3. (P,N) ← fix_residual_inconsistencies(Lattice); Section 2.9

First, the two representations are described, and then the other parts of the algorithm
are described in more detail.

4

Figure 3: An instance of the graph-topology problem consists of a set of 2D points, like
in this toy example (left most). In our system, a solution is represented in either of two
alternative representations: mesh-based, and lattice-based. Mesh-based representation
consists of a two-manifold, well-oriented and simple triangular mesh (middle column),
whose vertices are the given set of points. A lattice-based solution consists of a regular
honeycomb grid of cylindrical cells which can be assigned to one (or multiple) vertices
(rightmost column). Either representation is capable of expressing any permutation into
a lattice, like the one depicted on top (which is, in this case, the energy minimizer, and
therefore the optimum). Each representation is also subject to include inconsistencies
of different types. In the mesh representation, for example, internal vertices can have a
valency different from 6 (in the example on bottom: a valency-5 vertex is highlighted in red,
and valency-7 vertex in blue). In the lattice-based representation, there can be internal
“holes” in the regular grid, or multiple nodes assigned to the same grid cell, (bottom right).

Mesh Representation. In this representation, the permutation into a lattice is repre-
sented as a two-manifold, triangular, mesh whose vertices are D. In other words, a Mesh
consists of all points in D connected by a set of triangles; the sides of the triangles are
termed edges. This structure is the ubiquitous way to represent piecewise linear surfaces,
and has been deeply studied for example in Geometry Processing (e.g., see [5] for an
overview). The meshes are open and simple, meaning that they have a unique loop of
boundary edges and vertices (i.e., there are no internal “holes”). They are two-manifold,
meaning that every edge of each triangle is either a boundary edge or is shared by exactly
another triangle. The valency of a vertex is defined as the number of triangles sharing
that vertex. A mesh is called regular when each boundary vertex has valency < 6, and
each other vertex has valency 6.

A regular mesh can be interpreted as a permutation α of its vertices D into a lattice,
since it encodes a regular lattice. A mesh which is not regular, conversely, does not
correspond to any such permutation. The inconsistencies of a Mesh representation are,
therefore, vertices breaking the above requirement on the valency (termed “irregular”
vertices).

Lattice Representation. Our lattice, or matrix, is a 2D regular grid of hexagonal cells
(honeycomb tiling). Each element of D is hosted in one cell. A cell can be empty, or host
one or more elements. In the lattice, non-empty cells always form a contiguous subset of
the grid, and all cells on the boundary of the grid are empty.

Ideally, each non-empty cell hosts only a single element of D. Also, empty cells are

5

all found in one continuous set around the lattice (i.e., there is no island of empty cells
completely surrounded by non-empty cells). A lattice with these properties can be trivially
converted to a valid permutation α. The inconsistencies of a lattice representation are,
therefore, cells hosting more than one element of D (these elements are called “colliding”),
or empty cells that are not connected to the boundary of the grid by a sequence of empty
cells (these cells are called “holes”).

2.3 Step 1: Mesh Initialization

The algorithm is initialized by computing the 2D Delaunay triangulation [6] of the set of
vertices D. This process is fast and guarantees to produce a two-manifold, simple mesh.
In undeformed areas, this mesh reproduces the connectivity and the shape of a regular
grid and it is thus a correct solution. However, in distorted regions, irregular vertices are
introduced. The next steps address these inconsistencies.

2.4 Step 2: Mesh Local Operations

An edge-flip [6] is a standard local operation commonly used in the context of mesh
optimization and simplification. In the represented context, edge-flips are used to improve
the quality of the mesh, striving to obtain a regular connectivity on the entire mesh and a
decreased energy.

Figure 4: An example of an edge-flip operation: in this mesh, flipping the edge B-C
decreases the valency of vertices B and C by one, and increases the valency of vertices A
and B by one.

Specifically, the effect of an edge-flip is scored by two numbers (ea, eb). ea is the induced
increase in the number of regular vertices (or decrease if negative): as an edge-flip increases
the valency of two vertices by one, and increases the valency of other two vertices by
one (Supplementary Figure 4) it can either increase, decrease or leave unaffected the
total number of irregular vertices on the mesh. eb is the induced decrease is on energy E :
only the edge being flipped changes its length and thus its contribution to the energy E
(Equation (2)). An edge-flip is beneficial either when ea > 0, or when ea = 0 and eb > 0
All potential edge-flips (there is exactly one per edge) are tested, and the ones that are
beneficial are performed. In a second pass, the algorithm tests all the possible pairs of
consecutive edge flips affecting a common vertex that have a combined (summed) beneficial
effect.

Edge-flip operations which would reduce an internal vertex valency below 3, are always
disallowed as it would compromise the two-manifoldness of the mesh. While this step is
effective at solving many locally inconsistent configurations, it might fail at identifying the
long sequences of flips that may be necessary in images with large displacements. The
mesh is therefore converted to a lattice representation, to continue the optimization.

6

2.5 Step 3: Mesh To Lattice Conversion

Starting from an empty lattice, the mesh is explored, copying the indices of the encountered
vertices into the lattice cells, one by one. The mesh is visited with a “flood-fill” approach,
i.e., from a “seed” triangle and iteratively proceeding by expanding the visit to neighboring
triangles, until the entire mesh is visited.

Crucially, the parts of the mesh which are more regular are explored first; in this way,
the less ambiguous parts of the mesh, which can be interpreted with higher confidence,
serve as a guidance to settle the more ambiguous parts.

In practice the problematic parts of the mesh are surrounded by the visit (thus isolated)
and then conquered from the exterior inward.

A precise description of the employed algorithm is given below. In the following, we
define the “equilateral factor” of a triangle with sides lengths a, b, c, with a > b > c, as the
real number ((c+ b) /a− 1) . A perfectly equilateral triangle has factor 1, a completely
degenerate triangle has factor 0, and any intermediate case has values in between.

Identifying the Seed Triangle. Every triangle of the mesh is labelled as either reliable
or not reliable. A reliable triangle fulfills three conditions: (i) it is not on the mesh
boundary, (ii) its three vertices are regular (valency 6), and (iii) its shape is sufficiently
equilateral (equilateral factor larger than 0.85). The seed is selected as the furthest reliable
triangle (under hop distance) from any unreliable triangle; in other words, the triangle
which is surrounded by the maximal number of reliable triangles.

The three vertex indices of the seed triangle are copied into a group of three reciprocally
adjacent grid cells.

Enumerating and Prioritizing the Expansion Moves. An expansion move potentially
enlarges the set of visited triangles by one element, traversing one mesh edge adjacent to
an already visited triangle.

There is one expansion move for each internal mesh edge. At any given time, an
expansion move is available if at least one of the triangles shared by the corresponding
edge has been visited (note that this includes edges with visited triangles on both sides).
During the fill, all available moves are kept in a set, and prioritized, from highest to lowest
confidence, according to summed equilateral factors of the two triangles sharing the edge.
The set of available expansion moves is kept in a priority queue and is initialized with the
three edges of the seed triangle.

Iteratively, the element with the highest priority is extracted from the set of potential
moves, removed from the set, and the move executed. After the move, up to two new
available expansion moves are added to the set to reflect the expansion of the set of visited
triangles (and evaluate their priority). Traversed edges are flagged as such and never added
to the set of available moves a second time. The procedure terminates when the set is
empty (i.e., when each internal mesh edges has been traversed exactly once).

7

Figure 5: An example of the execution of an expansion-move. Executing the move
crossing the edge DJ and visiting triangle DJB (left-most diagram), would have the effect
of filling the grayed square of the lattice with the vertex labelled as B (right-most diagram).
If that square is already filled by a vertex other than B, or if vertex B is already allocated
anywhere else on the lattice, then this move would cause an inconsistency. In this case, an
edge-flip of one of the other two edges of DJB is attempted first: flipping the BD edge
causes the grayed square to be filled with vertex C instead of B (mid-left diagram); flipping
the JB edge causes it to be filled with vertex M instead of B (mid-right diagram). If either
edge-flip avoids the conflict, then it is performed before the move executed.

Executing an Expansion Move. An expansion move consists of expanding the visit
from the visited triangle tA, over edge e0, into the (potentially not yet visited) triangle tB.
Let vi be the vertex of tB opposite to edge e0. Executing the move consists of copying vi
into a given cell of the grid with index ci (see Supplementary Figure 5). The cell index ci
is fully determined by the cell position on the grid, of the vertices of tA. Note that, due
to previous expansion moves, it is possible that cell ci is already occupied by a vertex;
likewise, and independently, it is possible that vertex vi is already allocated in a grid cell.

Therefore, three cases can arise:

Expand when vertex vi is not currently allocated anywhere in the grid, and cell ci is
currently vacant;

Confirm when vertex vi is already present in cell ci (i.e., cell ci already contains vertex
vi);

Contradiction when vertex vi is already allocated in some other cell position different
from ci, or cell ci is already occupied by some vertex different from vi, or both.

In the Expand case, cell ci is filled with vertex vi. In the Confirm case, nothing needs
to be done; when that case arises, it means that the current expansion moves is consistent
with the lattice layout as inferred from the already visited triangles. This can happen,
for example, because vertex vi was previously reached from a different direction, possibly
along a completely different triangle paths from the seed.

Vice-versa, the third case happens because the starting mesh is not fully regular.
Executing the move would create an inconsistency. At this point, it is checked whether
the conflict can be avoided by means of edge flips performed on the mesh. There are
two potential edge flips, corresponding to 2 edges of tB that are not e0. If either edge
flip is viable, it would result in a different vertex indices v′i and v′′i in place of vi (see
Supplementary Figure 5), and therefore in a different case. The edge-flip is performed if it
is viable and results in the removal of the contradiction (if the extremely rare case when
both edge-flips qualify, the one resulting in the highest summed equilateral factors of the
two affected triangles is selected). Note that the edge flips are performed, in this phase,
regardless of their local effect on the valency of the vertices or the energy.

8

After the expansion move, assuming no contradiction arose or that it could be resolved,
the two external edges of tB are added to the set of potential moves, unless these edges
have been already processed.

Rationale. Importantly, triangles can be assigned to the grid by independently assigning
their three vertices to grid cells, before that triangle is explicitly visited. This happens for
example when the boundary of the visit meets with itself after that the flood-fill encircled
a problematic region (e.g., a region containing irregular vertices) from the two different
sides. Eventually, these triangles will be explicitly visited also. When that happens, the
visit can only either confirm or contradict the previously found grid layout. In case of
contradiction, the grid values are not overwritten, because earlier moves are, by design,
considered more reliable than later moves. Instead, the existing grid values are used to
correct the mesh connectivity (by means of flips). In conclusion, the flip operations which
are performed in this phase are driven by the global grid structure of the mesh, rather than
by its local configurations, differently from the local optimization on the mesh (Section
2.4). In this sense, this flip identification strategy is drastically more “long sighted” and
capable of avoiding local minima.

2.6 Step 4: Lattice Greedy Optimization

A Lattice admits three local operations: (1) permutation of a small subset of the vertex
indexes stored in the cells, (2) hole filling and (3) conflicts resolution. A set of local
operations is tested, and all the ones with a positive effect on the global energy are
performed (Equation (1))

Operation 1: Greedy Permutations. Given a set of n vertices v0 . . . vn−1 assigned
to cells c0 . . . cn−1, a cycle permutation is the reassignment of each vertex vi to c(i+1)%n (%
being the modulo operator). A cycle permutation is beneficial if it results in an overall
decrease of the energy. A brute force approach, where each set of 2, 3, and 4 adjacent
cells are tested for all potential cycles is used. Cycles of size 2 (that is, swaps between
pairs of cells) are also tested between any pairs of cells separated by a single cell. In total,
48 cycles are tentatively tried around each non empty grid cells, in a fixed pattern. The
resulting algorithm is linear with the number of cells and fast, because testing for the
effect of a cycle requires to sum up only a limited number of addendum to the energy in
Equation (2).

Operation 2: Hole Filling. A Lattice “hole” is defined as an empty grid cell that is
not connected to the lattice boundary by a path of empty cells.

Each disconnected empty cell is a hole and is evaluated for removal. In order to remove
a hole, first, the vertex from a neighboring non-empty cell must move to fill its position,
thus shifting the hole to that cell; then, the process has to be repeated until the hole ends
up neighboring one boundary empty cell, or the moving vertex is a conflicting vertex (i.e.,
was one of the two vertices allocated in the same cell). In the latter case, that “conflict”
inconsistency is also removed. Each movement of a vertex into the empty position comes
with an associated increase (rarely, a decrease) of the energy E. In other terms, in order to
fix a hole, a path from that position to a either a connected empty cell, or to a conflicting
vertex needs to be found.

The problem can be cast as a minimum cost path, which is solved using the Dijkstra
algorithm (seeded at the cell presenting the hole, and targeted at any eligible destination

9

of the path). The cost of every step is defined as the increase (rarely, the decrease) of
the energy for the corresponding swap. Additionally, the cost of the final step is further
decreased (possibly down to a negative number) by the value k0 (Equation (1)), to reflect
the decrease of the number of holes. In case that the final destination of the graph is
a conflicting vertex, the cost is also decreased by the additional value k1, to reflect the
decrease of the number of conflicts.

When the minimum cost path is identified, it is applied it if and only if its total cost
sum up to a negative number. Otherwise, the total likelihood of the found solution would
decrease (in other words, a more likely justification for the hole is to assume that an
existing point was undetected). To optimize, we abort the Dijkstra search over paths
which results in a total cost larger than (k0 + k1).

Operation 3: Conflict Resolution. For conflicts inconsistencies, the situation is
conceptually similar. A conflict is a situation where two vertex indices are located in the
same lattice cell. It can be solved by, first, moving either vertex index to a neighboring
cell, thus shifting the position of the conflict to that cell, and repeating this step until
an empty cell is reached. If the final empty cell is also labelled as disconnected from the
boundary (i.e., it is a hole), this has the additional side effect of simultaneously fixing that
hole. Again, the problem is cast as a minimal cost path search, solved via the Dijkstra
algorithm. This time, the path starts from the conflicted cell and terminates into any
empty cell, either connected or disconnected to the boundary. The cost associated to the
move terminating the path is decreased by k1 or by k0 + k1, to reflect the fixing of either
one or two inconsistencies. Similarly, to the previous case, the resulting fix is considered
profitable if the found path has a negative total cost (otherwise, it is concluded that the
inconsistency would be more parsimoniously explained by assuming the conflicting vertex
to result from a false positive in the point detection).

2.7 Step 5: Lattice To Mesh Conversion

This step is implemented as a variant to Step 4, that is, the mesh is visited again using a
flood-fill seeded at an appropriate starting location. The only difference is that this time, the
lattice is not initialized as empty, but kept unmodified at its current values. Consequently,
the only two possible outcomes for expansion moves are “confirm” or “contradiction” (and
never “expand”) and the only sought effect is to perform edge flips in the latter case.

Rationale. The objective is to modify the current mesh configuration to make it more
similar to the current lattice configuration, but only by means of valid local mesh operations
(the lattice is only used to guide these operations); this ensures that the mesh representation
is kept consistent. The aim is not to obtain a mesh configuration perfectly mirroring the
one represented by lattice, because inconsistencies which are potentially left in the lattice
(“collisions” and “holes”) cannot be represented in the mesh representation.

2.8 Step 6: Convergence Detection

The algorithm stops when an entire iteration (2 conversions and 2 sets of local operations)
are not changing the lattice representation. In our experience, this never takes more than
4 iterations.

10

2.9 Step 7: Removal Of Lattice Inconsistencies

For every set of points in D allocated to the same cell, one is selected to occupy that
cell, and the others are considered false positives and added to P. Similarly, every set of
isolated empty cells (i.e., separated from the boundary by non-empty cells) are considered
false negatives and added to N. Their position is computed as the average position of their
neighbors (the averaging is repeated until convergence, for islands of two cells of more).

3 Displacement Computation
At this stage, the markers in the input image have been detected, and the connectivity
between them computed. The next step is to reconstruct the marker displacements from
the rest configuration, to the configuration captured in the image. This is achieved
with a relaxation process that warps the markers in the image into a regular grid: the
displacements are then computed by taking the difference between the initial and relaxed
positions. The relaxation process is modeled using the graph Laplacian

Lij =

−
∑

j Lij i == j

1 i is a neighbor of j
0 otherwise

,

which, for a perfectly regular mesh, satisfies

Lx = 0,

where x are the coordinates of the vertices in the mesh. The vertices are split into two
groups - the inner vertices, which need to be relaxed to their original position, and the
boundary vertices which are fixed. The Laplacian L is split accordingly.

x =

[
xi
xb

]
L =

[
Lii Lib

Lbi Lbb

]
The system of equations is reduced to[

Lii Lib

] [xi
xb

]
= 0

and solving
xi = −L−1ii Libxb

yields the relaxed positions of the inner vertices. With the boundary vertices fixed, this
has the effect of simultaneously moving all the vertices to the barycenter of their on-ring
neighborhood, thus creating a regular hexagonal grid.

4 Force Reconstruction
The displacements computed in the previous step are already a good proxy for the traction
forces. The conversion of the markers’ displacements into traction forces depends on the
type of image. For pillars, the forces are discretely applied to each pillar and can be
reconstructed directly from the displacements. For quantum dots, the forces are applied
continuously on the substrate, and thus their reconstruction requires a finite element
method.

11

4.1 Pillars

For pillars, the forces can be directly computed from the displacement field u obtained in
the previous steps as

F =
3EI

L3
u,

where E is the Young’s modulus, I is the moment of inertia, and L is the length of the
pillars [2]. Results of this procedure are shown in Figure 3 in the main paper.

4.2 Quantum Dots

For quantum dots, we have to solve a volumetric deformation problem, which given the
target displacements of the vertices on the surface, finds the traction forces inducing such
displacement.

Volumetric Meshing. To set up our physical simulation problem, it is necessary to
first discretize the substrate, decomposing it into a mesh composed of tetrahedra. The
tetrahedral mesh is adaptive, with a higher density in the regions corresponding to the
higher displacement.

The meshing proceeds in 4 steps.

Step 1. A background 2D mesh is created as the Delaunay triangulation of the displaced
markers, plus a few additional points on an extended bounding box whose size is user-
controlled. In the following, we will distinguish the inner box (the substrate) from the
outer box (substrate + padding).

Step 2. A sizing field is computed in 2D to indicate the target edge length of the mesh
to be used in the simulation. First, the “source” of the sizing field is determined as the
mesh triangles whose vertices have a displacement larger than a user-given threshold (set
as percentage of the max displacement across all dots - 18% by default in our application).
The target size for the source region is then set as a user-defined percentage of the median
distance between adjacent quantum dots - 30% by default in our app. If no marker falls
within this threshold, the whole inner-box is set to be the “source”, and the target size is
set to the median distance between adjacent dots. The sizing field is then propagated from
the source region to the rest of the background mesh so that the ratio between adjacent
vertices follow a user-given ratio (a gradation of 1.2 is used by default).

Step 3. A dense tetrahedral mesh of the outer box is computed in 3D using TetGen
[6]. Let smax be the maximum target size of the 2D sizing field computed above. The 2D
sizing field is extended through the dense 3D volume so that it is equal to the original
field on the top (the surface), and equal to smax on the bottom.

Step 4. The dense tetrahedral mesh is remeshed with mmg [7] to follow the 3D sizing
field.

12

Finite Element Method. We propose two approaches, one for creating a quick preview
of the forces using a linear elastic material model, and a second one for accurate recon-
struction using a Neo-Hookean material model. For both modes the material parameters
are obtained through material testing (Figure 6; [1]) and assume no additional external
forces, which is a realistic approximation for most experimental setups. We solve for the
displacement u

−div (σ (u)) = 0 and
u = g on the boundary,

where σ (u) is the stress tensor and g are the boundary conditions. Note that the form
of σ (u) depends on the material model: for linear elasticity

σ (u) = 2µε (u) + λTr (ε (u)) I,

with ε (u) = 1
2

(
OuT + Ou

)
, for Neo-Hookean

σ (u) = µ
(
F − F−T

)
+ λln (detF)F−T ,

with F (u) = Ou+ I.
In both cases, the same boundary conditions g are specified. For the bottom side g

is zero, while for the top side it corresponds to the displacement field reconstructed in
Section 3. Note that, since a planar displacement field is measured in the xy-direction, we
leave the z -direction free to move to account for buckling effects. Since the displacement
field is defined only on the vertices of the detected points, radial basis function is used for
interpolation with Gaussian kernel [8, 9] to extend it to the whole plane. Finally, to obtain
the traction forces from the solution of the partial differential equation, we multiply the
stress σ with the face normal. We use isoparametric linear Lagrangian elements in both
cases. Results of this procedure are shown in Figure 2 in the main paper.

5 Material Characterization
In a previous publication the mechanical properties of the material was thoroughly charac-
terized [1]. Fitting of the hyperelastic Ogden model [9] achieved a very close recreation
of the uniaxial and biaxial material tests. Here, for the sake of implementation and
computation speed a linear model and Neo-Hookean model were fitted to the test data.
The data was least-square fitted for both uniaxial and biaxial simultaneously. Given the
incompressible properties of the silicone used, Poisson ratio was fixed at 0.49 and the only
free parameter was the Young’s modulus E. The Neo-Hookean model shows a very good fit
and deviates only slightly from the Ogden model for large stretches (Figure 6). The best
overall fit for the linear model was achieved at a lower stiffness of E = 10.05kPa, in which
case the uniaxial did not match well (Figure 6 (a)). Using the same stiffness as for the
Neo-Hooke, the uniaxial fit was better, but the biaxial fit quite off (Figure 6 (b)). Hence,
for accuracy the Neo-Hookean model is chosen, whereas for speed the linear model can be
used.

13

Figure 6: Material model fitting. (a) Uniaxial test data and fitted curves. (b) Equibiaxial
test data and fitted curves.

14

Figure 7: Mechanical response of YFP paxillin-expressing REF-52 cells to increasing
environmental temperature. (a) Representative example of cellular traction maps (left
panels) and corresponding inverted fluorescent images (YFP-paxillin, right panels). Scale
bar is 10 µ m. (b) Corresponding evolution of traction, strain energy and area relative
to the values measured at 37◦ C. Population analysis reporting the displacement (c) and
strain energy/area (d) relative to the values measured at 37◦ C. A red or blue line defines
the average value. The shaded area corresponds to the standard error of the mean. n =
number of individual measures, n′ = number of independent experiments.

15

Figure 8: Focal adhesion and actin filaments remodeling in YFP paxillin-expressing
REF-52 cells exposed to increasing environmental temperature. Representative examples
reporting the distribution of actin filaments (red), phosphorylated paxillin (green) and
nuclei (blue) in cells exposed to temperatures up to 40◦ C (middle row) and 45◦ C (bottom
row) as compared to control cells maintained at 37◦ C (upper row).

16

Figure 9: Correlation of traction forces. (a, b) Two examples of entanglement between
highly correlated pillars actuated by HeLa cells. Force components in the x (U1x and U2x)
and y (U1y and U2y) are reported over a total time of 160 min. (d-g) Binned scatter
plot of pairwise force correlation between pillars (as function of the length between the
pair) at displaced by HeLa cells in the G1 (d) or S/G2 (e) cell cycle phase, respectively.
Corresponding binned scatter plots for MDCK cells in the G1 (f) or S/G2 (g) phase.

17

Figure 10: Actin filaments in MDCK cells. (a) Boxplot reporting the calibration of
actin stress fiber length in fixed samples. The bars extend from the 25th to the 75th

percentile. A line in the box represents the mean value while the box height corresponds
to its standard deviation. Individual measures are reported as open red circles. (b)
Corresponding frequency distribution (in percentage) of measured values.

References
[1] Martin Bergert et al. “Confocal Reference Free Traction Force Microscopy”. In: Nature

communications 7 (2016), p. 12814.

[2] John L Tan et al. “Cells Lying on a Bed of Microneedles: An Approach to Isolate
Mechanical Force”. In: Proceedings of the National Academy of Sciences 100.4 (2003),
pp. 1484–1489.

[3] Nobuyuki Otsu. “A Threshold Selection Method From Gray-Level Histograms”. In:
IEEE transactions on systems, man, and cybernetics 9.1 (1979), pp. 62–66.

[4] Michael K Cheezum, William F Walker, and William H Guilford. “Quantitative
Comparison of Algorithms for Tracking Single Fluorescent Particles”. In: Biophysical
journal 81.4 (2001), pp. 2378–2388.

[5] Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. Delaunay Mesh Generation.
1st. Chapman & Hall/CRC, 2012.

[6] Hang Si. “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator”. In: ACM
Transactions on Mathematical Software 41.2 (Feb. 2015), pp. 1–36.

[7] C. Dapogny, C. Dobrzynski, and P. Frey. “Three-Dimensional Adaptive Domain
Remeshing, Implicit Domain Meshing, and Applications to Free and Moving Boundary
Problems”. In: Journal of Computational Physics 262 (Apr. 2014), pp. 358–378.

[8] B. Fornberg, E. Larsson, and N. Flyer. “Stable Computations With Gaussian Radial
Basis Functions”. In: SIAM J. Sci. Comput. 33 (2011), pp. 869–892.

[9] Raymond William Ogden. “Large Deformation Isotropic Elasticity - On the Correlation
of Theory and Experiment for Incompressible Rubberlike Solids”. In: Proceedings of
the Royal Society of London. A. Mathematical and Physical Sciences 326.1567 (1972),
pp. 565–584.

18

	Markers Detection
	Inferring Graph Topology
	Formal Problem Definition
	Problem Analysis
	Step 1: Mesh Initialization
	Step 2: Mesh Local Operations
	Step 3: Mesh To Lattice Conversion
	Step 4: Lattice Greedy Optimization
	Step 5: Lattice To Mesh Conversion
	Step 6: Convergence Detection
	Step 7: Removal Of Lattice Inconsistencies

	Displacement Computation
	Force Reconstruction
	Pillars
	Quantum Dots

	Material Characterization

